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Normal and anomalous scaling in a problem of a passively advected magnetic field
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Recently M. VergassolgPhys. Rev. 53, R3021(1996 | considered the possibility of anomalous scaling in
the three-dimensional dynamo problem. It has been shown that the two-point correlation function of magnetic
field, advected by a white-in-time random velocity field with zero helicity has anomalous inertial-range scaling
exponent in a statistically steady state. In this work we demonstrate that for the same problem the scaling of
covariance of magnetic helicity is normal. The difference in scalings comes from the fact that unlike magnetic
energy magnetic helicity in this problem is conserved. It is also conjectured that even small violation of parity
invariance of the velocity field makes existence of the steady-state solution imposkH#il663-
651X(96)51506-0

PACS numbdss): 47.27.Gs, 47.65:a

To quantitatively describe hydrodynamic turbulence orThe vector potential(x,t), defined as
turbulent transport phenomena one has to solve partial dif-
ferential equation for dynamical variabl@ecal velocity of a B, 1) =[VXA(X.1)] )
fluid, concentration of a contaminant, gtadvected by a gatisfies the equation
random (turbulen} velocity field. The Navier-Stokes and a
passive scalar equations are the most prominent examples. dA=[vXB]—Ve+ rV2A+f. 3)
These equations introduce inviscid dynamic constraints, such. i ) ,
as energy and scalar variance conservation laws, which playqe field ¢ in (3) is chosen to fix the gaugé-A=0. It can
a very important part in turbulence theory. If an external€ asily verified from(1) and (3) that for the case of no
energy input comes from the largest scales in a system and'@¢iNg and in the inviscid limit magnetic helicity
viscous(diffusive) dissipation acts at the small scales only #=J/dX I'(x.t), where the helicity density (x,t)=A-B, is
we, assuming the existence of a statistically steady state Honserved.

the limit of zero viscosity(diffusivity), come to the only The white-in-time incompressibleV( v=0) random ve-
conclusion that the dynamics of the intermediate scales ar@City field is defined by the correlation function
domiqated by the advectiv(monli_nea) contlribut.ions to the (0i(X, (X' 1)) = 8(t—t")Dyj (x—X")

equation. This range of scales is called inertial range. In a

statistically steady state due to the conservation laws, the =o(t—t")[D;;(0)—S;(n)] 4

dynamics of fluctuations in the inertial range of scales can be i

described in terms of th@(1) constant, scale-independent, With the structure function

fluxes of conserved quantities. Us!ng thgse fluxes as govern- S;(r)= Drf[(§+2)5ij —éniny ]+ enh(r), (5)
ing parameters, one can design dimensional arguments lead-

ing to the scaling exponents of the second-order correlatiowhere O<£<2 andn;=r;/r. In (5) we have addedin con-
functions, energy and scalar-variance spectra, etc. Originatrast with[4]) the helical term which is proportional to the
ing from the classic Kolmogorov theory of turbulence, theantisymmetric tensog;; and a functiorh(r) to be discussed
dimensional arguments have been one of the main and quitater. The forcd is Gaussian, white in time and isotropic, but
successful tools of investigation of turbulence and turbulenit can break the parity invariance. We assume that
transport.

The present interest in the problem of a passive scalar (FiOOfi(r,t"))y=o(t—t")F(r),
advected by a white-in-time random velocity field has been (6)
motivated by Kraichnan's suggestigd] that while the 1
second-order moment of the scalar difference is well de- 5 €N Fi(0,0)F;(r,t"))=8(t—t")Fpu(r),

scribed by the dimensional argument, the higher-order mo- 2

ments ,sgcale' “anomalously,” i.e.5,=([T(X)=T(x')]1*")  and the force acts at large scafesL only. This means that
o[x=x'[£2n with £,,#n&,. It has been also show@,3]that  \whenr/L—0 the functionsF(r) = const- B2r2+ O((r/L)*%)
the fourth-order moments are dominated by the zero modeg,,q Fh(r)=,8fBSrL[1+O((r/L)2))] where Bé sets the

leading to the anomalous scaling. level of ma .
. gnetic energy arlg;|<1 sets the level of mag-
In a recent paper Vergassdky considered a problem of netic helicity. The nonzer&,(r) explicitly leads to the vio-

a passive magnetic fiel advected by a white-in-time ran- 150, of the parity invariance of the velocity field.
dom velocity field obeying the following equation of motion: We will be interested in the two-point correlation function

of the magnetic field

9.B+v-VB=B-Vo+ vV2B+[Vxf]. (1) (Bi(0,1)B;(r,t))=H(r,t). (7)
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The general form of the two-point correlation function for the conservation laws, which do exist in the magnetic field

the vector potentiah is problem, in the scaling properties of different correlation
function.
(Ai(0,1)Aj(r,1))=C, 8+ Conin; + €;xNCs.  (8) The magnetic helicity is an inviscid invariant of the sys-

tem governed by1l) whenf=0. It is convenient to charac-

It is convenient to use the trace of correlation function tenso;Eerize the fluctuations of magnetic helicity in terms of the

C(r,t)=3Cy(r, 1)+ Cy(r,1). (9) trace of this correlation functiofil1)
The functionsC; and C, can be expressed in terms Gf = — /A, _ __ 2 i 2
using incompressibility of the velocity fieltsee[4]). It can E(rO=(A(ODB(1,1) 12 or (r"Cy). (14

also be shown fronf2), (7), and(8) that
For the white-in-time Gaussian velocity field the equations

149 , . for the correlation functiorE (r,t) have the form
H(r,t)=—— —(r°G) with G(r,t)=—. (10
reor or _ .
: =_c2 (vr2+Dr2+§)a—: —Ei(rzF ). (15
Expressiong?2), (8) and(10) lead to gt rlor or r2 or h’-
1 Cz dC3 It is evident from(15) that in this case the magnetic helicity
(AODB; ()= F €ijmG(r, 1) - 5”(T+ a_r> correlation function obeys the equation similar to that gov-

erning the dynamics of a passive scalar advected by the ve-
_ n-n»(% 3C3) (11) locity field v defined by(4). SinceF,# 0, we find the steady
t ' state scaling solution for magnetic helicity correlation func-
tion with the scaling exponent identical to that of a scalar

First, we discuss the parity-invariant calsér)=0 consid-  aqdvected by a white-in-time velocity fielgee for example
ered in[4]. For the white-in-time Gaussian velocity field [2)

equations for the correlation functio®(r,t) can be derived

readily using the Wick theorem. The equation of motion for ,3f|33|_

G(r,t) has the form E(r)—5(0)=mf2_§- (16)
ﬁz 32 i (vr2+ Dr2+f)E} It is interesting that16) holds independently of the dynam-
gt reor or ics of H(r). It has been shown if4] that the equation for

2G 9F H(r) has a growing in time solutions whef™>1. On the
+ —[Dré(£2+2£-2)—2v]+—. (120  other hand, even fog>1 the correlation functiorE(r) is

r ar given by a steady-state solutig6) corresponding to the
normal scaling. There is no contradiction since the growing
in time H(r,t) and the time-independe@(r) can exist si-
multaneously. The increase in the magnitude of the magnetic
field vectorB is accompanied by the modification of its ori-
entation keeping magnetic helicity constant. Locally vectors

A and B should be nearly orthogonal implying that a mag-

H(r)er?, netic field is locally nearly two dimensional.

(13) Thus, we havg shown that the p_roblem of a passively
advected magnetic field allows coexistence of both normal
and anomalous scaling regimes for conserved and not con-
served quantities, respectively. As in the Navier-Stokes tur-
bulence and in the problem of a passive scalar advection the

The proportionality coefficient if13) depends on the force normal scaling is related to constant fluxes of inviscid invari-

amplitude. The nontrivial scalin¢l3) follows from the ex- ants which dominate the inertial range dynamics. The dy-

istence of nontrivial zero modes of the advection operator imamics of magnetic field, however, governed (ly cannot

the equation(12). be characterized by the constant flux. As we see, the first

The most interesting feature of the Vergassola solution isontribution to the right side ofl) serves as a source of
that the exponeny cannot be derived using the dimensional magnetic field acting in the entire interval of wavenumbers
considerations. This fact is somewhat surprising since, at/L <k<ky wherek, is the dissipation wavenumber.

first glance, the problem of the passive magnetic figldis In the case of nonzero kinetic helicity(r) the well

similar to that of the passive scalar with the two-point cor-known « effect takes placgs]. Similarly to (14) the kinetic

relation function characterized by a perfectly normal scalinghelicity correlation function is defined:

Indeed, simple power counting applied(y easily yields an

incorrect passive scalarlike exponent. The main difference

between the equation for a passive scalar @nds the fact
that (1) does not conserve the variance of magnetic field

B2. The goal of this work is to elucidate the role played bywherew is vorticity. Equationg12) and(15) take the form

Equation(12) is equivalent to the equation fdd(r,t) ob-
tained in[4]. The solution of this equation has been found by
Vergassola for & ¢<1 [4] (only in this case a stationary
state exists Recalling the definitiori10) we find the leading
contribution to the solution in the range<L:

3+¢ 3 1z

VT2 T2

1
1-3é(¢+2)

2 9
(i wi(rt))=— 7 - [r*h(n]et-t) (17
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G 2 9 JG
= 2 2+&\__
2 (vre+Dr )ar}
JFZGD§ 242¢-2)-2 +aF+2 7=
r—z[ re(é°+2£6—-2)—2v] rm a(f)y
(18
and
)= 2 d IE| 2 9
= _ 2 2+§__ )
2o (vr<+Dr<"¢) } r—z(?r(r Fr)
2 9
— 2 5 La(nr’G] (19
where
h(r
a(r)=¥—a0 with ao—hmﬁ (20
r—0

The constantyg is proportional to the mean kinetic helicity

(« effect). The appearance af, terms in Eqs(18) and(19)

reflects the conservation law of magnetic helicity. The mag-
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proven only numerically. Therefore, the existence of nega-
tive eigenvalue solutions in the complementary Sdinger
equation should be considered only as a conjecture of an
instability of a steady-state solution of the systéi8), (19).

It has already been shown [id] that for the cas&>1 the
Schralinger equation has negative energy solutions that lead
to the absence of a stationary state. It is clear that additional
attractive potential in Eq22) only increases the instability.
Moreover, in the case of nonzero kinetic helicity there are no
stationary states even f@r<1. To demonstrate this fact we
have to make more specific assumptions about kinetic helic-
ity correlation functionh(r).

Obviously, the kinetic energy and kinetic helicity should
be connected. It is possible to have kinetic energy without
helicity, but it is impossible to have kinetic helicity without
kinetic energy. It is sufficient to consider only the case of
“maximally helical” velocity field (it is the only case when
kinematic helicity correlation function has the same scaling
exponenté). For this state velocity correlation function in
Fourier space should have the form

47-rk2(v-(—k)v<(k)>=E(k)(5--—mﬂﬂe-- ﬁ) (24)
i j ij k2 ijl k|

netic helicity is conserved in an inviscid case even when

kinetic helicity is present.
Now we can see that in this case E(¢E3) and (19) are

In (24) |B|<1 is helicity level and “maximal helicity” is
reached ap3=*+ 1. To reproduce the scaling relati¢d) we

coupled. It is convenient to introduce the following transfor- need to assumg(k) =Eq/k!*¢ Then it can be shown that

mation (see[4]):

rG(r,t)

e(r,t)= W where m(r)= m (21

The transformatior{21) as well as Eq(12) were suggested
in the seminal work of Kazantsg]. Using (18) and (19)
we get

d r 92
m(r)ﬁ(w—m(r)”za(r) E(p,t)pzdp)=%—u(r)w
0
(22

where the potentidl (r) in the limit of molecular diffusivity
v=0 has the form

2-3¢-3¢

2
U(r)= 2 )

- DA%

(23

Thus, we have obtained the Sctilager-like equation simi-
lar to that derived by Vergassold]. This equation is not

h(r)eBD tar(%g)rf— ng((i ?)r(g) ( g)rLf !
(25

whereI'(£) is the gamma functiorL. is the infrared cutoff
and EqxD. In the caset{=1 the relation(25) reduces to
h(r)eBDr In(L/r). We also assume th&R5) is valid only
whenr>r 4 and it has a dissipative cutoff at dissipation scale
rq. For é<1 the functiona(r) has the form

a(r)=BD(r§ 1—ré ). (26)
In (26) the large scale dynamics is dominated by the first
term. Thus, the potentidl (r) in (23) is repulsive as 17 at
smallr and attractive as 7¢ at the large ones. In this case
the Schrdinger equation always has a negative energy state
(see, for exampld,7]) and no stationary state solution exists.
Although the « effect on average does not lead to the in-
crease of the total magnetic helicity it leads to the instability
of the system. It is clear froni23) that this destabilization

closed. But, being interested in the properties of the steadyeffect is O(a(r)) as in the randomx model discussed by

state solution, we set the left side(@R) to zero. Now we are
looking for the zero-energyH=0) solution of the Schro

Kraichnan in[8].
In conclusion, we would like to summarize the main re-

dinger equation with the kinetic helicity-dependent potential.sults of this work. In the case of the parity invariant velocity
The existence of the negative eigenvalue solutidas:(Q) field the scaling exponent of helicity correlation function is
could imply the absence of a stationary state in this systermormal, i.e., can be obtained from the dimensional argument.
To prove that no stationary solution exists we need to showrhis result is correct even in the cage- 1 where the mag-
that the system of equatiori$8), (19) has a growing eigen- netic field B grows in time while the helicity correlation
mode satisfying the boundary conditions. These boundarfunction is in a statistically steady state. At the same time,
conditions are the absence of singularity at smalll/ky and  the dominant contribution to the scaling of the magnetic field
the requirement that correlation functions decay at large correlation function, which is derived from a homogeneous
>L. Unfortunately, as far as we understand, the existence afquation, is dominated by the zero modes and is anomalous.
bounded growing eigenmodes in Eq4d8), (19) can be It cannot be derived on dimensional grounds. It is interesting
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that even a small violation of the parity invariance of thegeneral this result is.

external velocity field can make the steady state of the helic- ] o

ity correlation function impossible notwithstanding the con- We would like to thank M. Vergassola for providing us
servation of total helicity in the system. The fact that theWith his work prior to publication. We are grateful to S.
two-point correlation functions of conserved and noncon-Orszag for valuable discussions. This work was supported by
served properties have normal and anomalous scalings, réRPA/ONR under URI Grant No. N00014-92-J-1796,
spectively, emphasizes the role of conservation laws in turAFOSR Grant No. F49620-93-1-0296 and ONR Contract
bulence theory. At the present time we do not know howNo. N00014-92-C-0118.
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