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Recently M. Vergassola@Phys. Rev. E53, R3021~1996!# considered the possibility of anomalous scaling in
the three-dimensional dynamo problem. It has been shown that the two-point correlation function of magnetic
field, advected by a white-in-time random velocity field with zero helicity has anomalous inertial-range scaling
exponent in a statistically steady state. In this work we demonstrate that for the same problem the scaling of
covariance of magnetic helicity is normal. The difference in scalings comes from the fact that unlike magnetic
energy magnetic helicity in this problem is conserved. It is also conjectured that even small violation of parity
invariance of the velocity field makes existence of the steady-state solution impossible.@S1063-
651X~96!51506-0#

PACS number~s!: 47.27.Gs, 47.65.1a

To quantitatively describe hydrodynamic turbulence or
turbulent transport phenomena one has to solve partial dif-
ferential equation for dynamical variables~local velocity of a
fluid, concentration of a contaminant, etc.! advected by a
random~turbulent! velocity field. The Navier-Stokes and a
passive scalar equations are the most prominent examples.
These equations introduce inviscid dynamic constraints, such
as energy and scalar variance conservation laws, which play
a very important part in turbulence theory. If an external
energy input comes from the largest scales in a system and a
viscous~diffusive! dissipation acts at the small scales only
we, assuming the existence of a statistically steady state in
the limit of zero viscosity~diffusivity!, come to the only
conclusion that the dynamics of the intermediate scales are
dominated by the advective~nonlinear! contributions to the
equation. This range of scales is called inertial range. In a
statistically steady state due to the conservation laws, the
dynamics of fluctuations in the inertial range of scales can be
described in terms of theO(1) constant, scale-independent,
fluxes of conserved quantities. Using these fluxes as govern-
ing parameters, one can design dimensional arguments lead-
ing to the scaling exponents of the second-order correlation
functions, energy and scalar-variance spectra, etc. Originat-
ing from the classic Kolmogorov theory of turbulence, the
dimensional arguments have been one of the main and quite
successful tools of investigation of turbulence and turbulent
transport.

The present interest in the problem of a passive scalar
advected by a white-in-time random velocity field has been
motivated by Kraichnan’s suggestion@1# that while the
second-order moment of the scalar difference is well de-
scribed by the dimensional argument, the higher-order mo-
ments scale ‘‘anomalously,’’ i.e.,Sn5^@T(x)2T(x8)#2n&
}ux2x8uj2n with j2nÞnj2 . It has been also shown@2,3# that
the fourth-order moments are dominated by the zero modes
leading to the anomalous scaling.

In a recent paper Vergassola@4# considered a problem of
a passive magnetic fieldB advected by a white-in-time ran-
dom velocity field obeying the following equation of motion:

] tB1v•¹B5B•¹v1n¹2B1@¹3f#. ~1!

The vector potentialA(x,t), defined as

B~x,t !5@¹3A~x,t !# ~2!

satisfies the equation

] tA5@v3B#2¹w1n¹2A1f. ~3!

The fieldw in ~3! is chosen to fix the gauge¹•A50. It can
be easily verified from~1! and ~3! that for the case of no
forcing and in the inviscid limit magnetic helicity
m5*dx G(x,t), where the helicity densityG(x,t)5A•B, is
conserved.

The white-in-time incompressible (¹•v50) random ve-
locity field is defined by the correlation function

^v i~x,t !v j~x8,t8!&5d~ t2t8!Di j ~x2x8!

[d~ t2t8!@Di j ~0!2Si j ~r!# ~4!

with the structure function

Si j ~r !5Dr j@~j12!d i j2jninj #1e i jknkh~r !, ~5!

where 0<j<2 andni5r i /r . In ~5! we have added~in con-
trast with @4#! the helical term which is proportional to the
antisymmetric tensore i jk and a functionh(r ) to be discussed
later. The forcef is Gaussian, white in time and isotropic, but
it can break the parity invariance. We assume that

^ f i~0,t ! f i~r,t8!&5d~ t2t8!F~r !,
~6!

1

2
e i jknk^ f i~0,t ! f j~r,t8!&5d~ t2t8!Fh~r !,

and the force acts at large scalesr;L only. This means that
when r /L→0 the functionsF(r )5const2B0

2r 21O„(r /L)4…
and Fh(r )5b fB0

2rL @11O„(r /L)2)…], where B0
2 sets the

level of magnetic energy andub f u<1 sets the level of mag-
netic helicity. The nonzeroFh(r ) explicitly leads to the vio-
lation of the parity invariance of the velocity field.

We will be interested in the two-point correlation function
of the magnetic field

^Bi~0,t !Bi~r,t !&5H~r ,t !. ~7!
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The general form of the two-point correlation function for
the vector potentialA is

^Ai~0,t !Aj~r,t !&5C1d i j1C2ninj1e i jknkC3 . ~8!

It is convenient to use the trace of correlation function tensor

C~r ,t !53C1~r ,t !1C2~r ,t !. ~9!

The functionsC1 andC2 can be expressed in terms ofC
using incompressibility of the velocity field~see@4#!. It can
also be shown from~2!, ~7!, and~8! that

H~r ,t !52
1

r 2
]

]r
~r 2G! with G~r ,t ![

]C

]r
. ~10!

Expressions~2!, ~8! and ~10! lead to

^Ai~0,t !Bj~r,t !&5
1

2
e i jknkG~r ,t !2d i j SC3

r
1

]C3

]r D
2ninj SC3

r
2

]C3

]r D . ~11!

First, we discuss the parity-invariant caseh(r )50 consid-
ered in @4#. For the white-in-time Gaussian velocity field
equations for the correlation functionsG(r ,t) can be derived
readily using the Wick theorem. The equation of motion for
G(r ,t) has the form

]G

]t
5

2

r 2
]

]r F ~nr 21Dr 21j!
]G

]r G
1
2G

r 2
@Dr j~j212j22!22n#1

]F

]r
. ~12!

Equation~12! is equivalent to the equation forH(r ,t) ob-
tained in@4#. The solution of this equation has been found by
Vergassola for 0,j<1 @4# ~only in this case a stationary
state exists!. Recalling the definition~10! we find the leading
contribution to the solution in the ranger!L:

H~r !}r g,
~13!

g52
31j

2
1
3

2 S 12
1

3
j~j12! D 1/2.

The proportionality coefficient in~13! depends on the force
amplitude. The nontrivial scaling~13! follows from the ex-
istence of nontrivial zero modes of the advection operator in
the equation~12!.

The most interesting feature of the Vergassola solution is
that the exponentg cannot be derived using the dimensional
considerations. This fact is somewhat surprising since, at
first glance, the problem of the passive magnetic field~1! is
similar to that of the passive scalar with the two-point cor-
relation function characterized by a perfectly normal scaling.
Indeed, simple power counting applied to~1! easily yields an
incorrect passive scalarlike exponent. The main difference
between the equation for a passive scalar and~1! is the fact
that ~1! does not conserve the variance of magnetic field
B2. The goal of this work is to elucidate the role played by

the conservation laws, which do exist in the magnetic field
problem, in the scaling properties of different correlation
function.

The magnetic helicity is an inviscid invariant of the sys-
tem governed by~1! when f50. It is convenient to charac-
terize the fluctuations of magnetic helicity in terms of the
trace of this correlation function~11!

J~r ,t ![^Ai~0,t !Bi~r,t !&52
2

r 2
]

]r
~r 2C3!. ~14!

For the white-in-time Gaussian velocity field the equations
for the correlation functionJ(r ,t) have the form

]J

]t
5

2

r 2
]

]r F ~nr 21Dr 21j!
]J

]r G2
2

r 2
]

]r
~r 2Fh!. ~15!

It is evident from~15! that in this case the magnetic helicity
correlation function obeys the equation similar to that gov-
erning the dynamics of a passive scalar advected by the ve-
locity field v defined by~4!. SinceFhÞ0, we find the steady
state scaling solution for magnetic helicity correlation func-
tion with the scaling exponent identical to that of a scalar
advected by a white-in-time velocity field~see for example
@2#!

J~r !2J~0!5
b fB0

2L

D~22j!
r 22j. ~16!

It is interesting that~16! holds independently of the dynam-
ics of H(r ). It has been shown in@4# that the equation for
H(r ) has a growing in time solutions whenj.1. On the
other hand, even forj.1 the correlation functionJ(r ) is
given by a steady-state solution~16! corresponding to the
normal scaling. There is no contradiction since the growing
in time H(r ,t) and the time-independentJ(r ) can exist si-
multaneously. The increase in the magnitude of the magnetic
field vectorB is accompanied by the modification of its ori-
entation keeping magnetic helicity constant. Locally vectors
A andB should be nearly orthogonal implying that a mag-
netic field is locally nearly two dimensional.

Thus, we have shown that the problem of a passively
advected magnetic field allows coexistence of both normal
and anomalous scaling regimes for conserved and not con-
served quantities, respectively. As in the Navier-Stokes tur-
bulence and in the problem of a passive scalar advection the
normal scaling is related to constant fluxes of inviscid invari-
ants which dominate the inertial range dynamics. The dy-
namics of magnetic field, however, governed by~1! cannot
be characterized by the constant flux. As we see, the first
contribution to the right side of~1! serves as a source of
magnetic field acting in the entire interval of wavenumbers
1/L,k,kd wherekd is the dissipation wavenumber.

In the case of nonzero kinetic helicityh(r ) the well
knowna effect takes place@5#. Similarly to ~14! the kinetic
helicity correlation function is defined:

^v i~0,t !v i~r,t8!&52
2

r 2
]

]r
@r 2h~r !#d~ t2t8! ~17!

wherev is vorticity. Equations~12! and ~15! take the form
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]G

]t
5

2

r 2
]

]r F ~nr 21Dr 21j!
]G

]r G
1
2G

r 2
@Dr j~j212j22!22n#1

]F

]r
12a~r !

]J

]r

~18!

and

]J

]t
5

2

r 2
]

]r F ~nr 21Dr 21j!
]J

]r G2
2

r 2
]

]r
~r 2Fh!

2
2

r 2
]

]r
@a~r !r 2G# ~19!

where

a~r !5
h~r !

r
2a0 with a05 lim

r→0

h~r !

r
. ~20!

The constanta0 is proportional to the mean kinetic helicity
~a effect!. The appearance ofa0 terms in Eqs.~18! and~19!
reflects the conservation law of magnetic helicity. The mag-
netic helicity is conserved in an inviscid case even when
kinetic helicity is present.

Now we can see that in this case Eqs.~18! and ~19! are
coupled. It is convenient to introduce the following transfor-
mation ~see@4#!:

c~r ,t !5
rG~r ,t !

m~r !1/2
wherem~r !5

1

2~n1Dr j!
. ~21!

The transformation~21! as well as Eq.~12! were suggested
in the seminal work of Kazantsev@6#. Using ~18! and ~19!
we get

m~r !
]

]t S c22m~r !1/2a~r !E
0

r

J~r,t !r2dr D 5
]2c

]r 2
2U~r !c

~22!

where the potentialU(r ) in the limit of molecular diffusivity
n50 has the form

U~r !5
22 3

2 j2 3
4 j2

r 2
2

a2~r !

D2r 2j . ~23!

Thus, we have obtained the Schro¨dinger-like equation simi-
lar to that derived by Vergassola@4#. This equation is not
closed. But, being interested in the properties of the steady-
state solution, we set the left side of~22! to zero. Now we are
looking for the zero-energy (E50) solution of the Schro¨-
dinger equation with the kinetic helicity-dependent potential.
The existence of the negative eigenvalue solutions (E,0)
could imply the absence of a stationary state in this system.
To prove that no stationary solution exists we need to show
that the system of equations~18!, ~19! has a growing eigen-
mode satisfying the boundary conditions. These boundary
conditions are the absence of singularity at smallr;1/kd and
the requirement that correlation functions decay at larger
@L. Unfortunately, as far as we understand, the existence of
bounded growing eigenmodes in Eqs.~18!, ~19! can be

proven only numerically. Therefore, the existence of nega-
tive eigenvalue solutions in the complementary Schro¨dinger
equation should be considered only as a conjecture of an
instability of a steady-state solution of the system~18!, ~19!.

It has already been shown in@4# that for the casej.1 the
Schrödinger equation has negative energy solutions that lead
to the absence of a stationary state. It is clear that additional
attractive potential in Eq.~22! only increases the instability.
Moreover, in the case of nonzero kinetic helicity there are no
stationary states even forj<1. To demonstrate this fact we
have to make more specific assumptions about kinetic helic-
ity correlation functionh(r ).

Obviously, the kinetic energy and kinetic helicity should
be connected. It is possible to have kinetic energy without
helicity, but it is impossible to have kinetic helicity without
kinetic energy. It is sufficient to consider only the case of
‘‘maximally helical’’ velocity field ~it is the only case when
kinematic helicity correlation function has the same scaling
exponentj). For this state velocity correlation function in
Fourier space should have the form

4pk2^v i~2k!v j~k!&5E~k!S d i j2
kikj
k2

1 ibe i j l
kl
k D . ~24!

In ~24! ubu<1 is helicity level and ‘‘maximal helicity’’ is
reached atb561. To reproduce the scaling relation~5! we
need to assumeE(k)5E0 /k

11j Then it can be shown that

h~r !}bD tanS pj

2 D r j2bD
2j~j12!

3p~12j!
G~j!sinS pj

2 D rL j21

~25!

whereG(j) is the gamma function,L is the infrared cutoff
and E0}D. In the casej51 the relation~25! reduces to
h(r )}bDr ln(L/r). We also assume that~25! is valid only
whenr.r d and it has a dissipative cutoff at dissipation scale
r d . For j<1 the functiona(r ) has the form

a~r !}bD~r d
j212r j21!. ~26!

In ~26! the large scale dynamics is dominated by the first
term. Thus, the potentialU(r ) in ~23! is repulsive as 1/r 2 at
small r and attractive as 1/r 2j at the large ones. In this case
the Schro¨dinger equation always has a negative energy state
~see, for example,@7#! and no stationary state solution exists.
Although thea effect on average does not lead to the in-
crease of the total magnetic helicity it leads to the instability
of the system. It is clear from~23! that this destabilization
effect isO„a2(r )… as in the randoma model discussed by
Kraichnan in@8#.

In conclusion, we would like to summarize the main re-
sults of this work. In the case of the parity invariant velocity
field the scaling exponent of helicity correlation function is
normal, i.e., can be obtained from the dimensional argument.
This result is correct even in the casej.1 where the mag-
netic field B grows in time while the helicity correlation
function is in a statistically steady state. At the same time,
the dominant contribution to the scaling of the magnetic field
correlation function, which is derived from a homogeneous
equation, is dominated by the zero modes and is anomalous.
It cannot be derived on dimensional grounds. It is interesting
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that even a small violation of the parity invariance of the
external velocity field can make the steady state of the helic-
ity correlation function impossible notwithstanding the con-
servation of total helicity in the system. The fact that the
two-point correlation functions of conserved and noncon-
served properties have normal and anomalous scalings, re-
spectively, emphasizes the role of conservation laws in tur-
bulence theory. At the present time we do not know how

general this result is.
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